Multi-view X-ray R-CNN

Jan-Martin O. Steitz, Faraz Saeedan, and Stefan Roth

TECHNISCHE UNIVERSITÄT DARMSTADT

Goal

- X-ray recordings of luggage
- Utilize **multi-view information** End-to-end trainable **multi-**
- Leverage features from pre-

Contributions

- **Detect prohibited objects** in **Multi-view pooling** layer for 3D aggregation of 2D features
 - view detection pipeline

Multi-view

end-to-end trainable

Multi-view X-ray Dataset

- **Dual-energy X-ray** recordings
- Converted to **false-color RGB**
- 4 different views per recording
- 2 object classes: weapon and

Туре	Images		
Glassbottle	2428		
TIP Weapon	8640		
Real Weapon	1856		
Negative	3800		
All	16724		

trained deep CNN-backbones

Example of multi-view X-ray images of hand luggage. Ground-truth (green) and detected (*red*) bounding boxes (detection confidence of 99.2%).

MX-RCNN Architecture

- Multi-view end-to-end trainable object detection pipeline
- Hybrid 2D-3D architecture
- Based on Faster R-CNN [1]
- **ResNet-50** backbone [2]
- Feature extraction of each view independently in 2D
- Combine 2D features in **multi-view pooling layer**
- Propose and evaluate **3D bounding boxes**
- Computationally faster and cheaper than separate processing of views

glassbottle

Image resolution of [704, 832] × [101, 1400] px

3D bounding box annotations

- axis-aligned **3D** • Generate bounding boxes from 2D bounding box annotations
- Intersection of projection lines in the *xy*-plane
- Choose minimal bounding box enclosing the polygon
- Project 3D bounding boxes back onto 2D views for propagation of estimation error

Multi-view Pooling Layer

- Maps **2D feature maps** of views to common **3D feature volume**
- Uses **known geometry** of recording setup
- Weighted **average** or weighted **maximum** across all X-ray beams
- Normalized volume of intersection as weights

Bounding boxes show the original 2D annotations (*black*) and the reprojected 3D annotations (red).

Results

Results (in %) of MX-RCNN networks compared to single-view baseline (standard Faster R-CNN). Evaluation of proposed 3D bounding boxes as well as projections onto 2D views.

Method	Single-view	MX-RCNN _{avg}		ingle-view MX-RCNN _{avg} MX-RCNN		CNN _{max}
Evaluation	2D	3D	2D	3D	2D	
Weapon AP Glassbottle AP Mean AP	85.6 96.9 91.2	92.3 98.8 95.6	90.3 95.4 92.8	89.0 98.7 93.9	87.7 95.6 91.7	

References

- [1] Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE T. Pattern Anal. Mach. Intell. **39**(6), 1137–1149 (Jun 2017)
- [2] He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016)

Conclusion

- Multi-view end-to-end trainable MX-RCNN detector
- Novel multi-view pooling layer
- Clear accuracy gains, particularly in the high-recall regime

Acknowledgements

The authors gratefully acknowledge support by Smiths Heimann GmbH.