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Goal Contributions

e Detect prohibited objects in ¢ Multi-view pooling layer for 3D
X-ray recordings of luggage aggregation of 2D features

e Utilize multi-view information ¢ End-to-end trainable multi-

 Leverage features from pre- view detection pipeline

trained deep CNN-backbones

Example of multi-view X-ray images of hand luggage. Ground-truth (green) and
detected (red) bounding boxes (detection confidence of 99.2 %).

MX-RCNN Architecture

e Multi-view end-to-end trainable
object detection pipeline

 Hybrid 2D-3D architecture

e Based on Faster R-CNN [1]

e ResNet-50 backbone [2]

* Feature extraction of each view independently in 2D

 Combine 2D features in multi-view pooling layer

* Propose and evaluate 3D bounding boxes

 Computationally faster and cheaper than separate processing
of views
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Multi-view Pooling Layer

 Maps 2D feature maps of views to common 3D feature volume
 Uses known geometry of recording setup

 Weighted average or weighted maximum across all X-ray beams
 Normalized volume of intersection as weights
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Multi-view X-ray Dataset

* Dual-energy X-ray recordings Type Images
* Converted to false-color RGB

e 4 different views per recording
e 2 object classes: weapon and

Glassbottle 2428
TIP Weapon 8640
Real Weapon 1856

glassbottle |
 Image resolution of [704, 832] x Negative 3800
[101, 1400] px All 16724

3D bounding box annotations
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Bounding boxes show the original 2D annotations (black) and the reprojected 3D

annotations (red).

Results

Results (in %) of MX-RCNN networks compared to single-view baseline
(standard Faster R-CNN). Evaluation of proposed 3D bounding boxes

as well as projections onto 2D views.

Method Single-view MX-RCNN,,, MX-RCNN,
Evaluation 2D 3D 2D 3D 2D
Weapon AP 85.6 92.3 90.3 89.0 87.7
Glassbottle AP 96.9 08.8 954 98.7 05.6
Mean AP 01.2 95.6 92.8 939 01.7
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(a) Weapon class. (b) Glassbottle class.
Conclusion

* Multi-view end-to-end trainable MX-RCNN detector
* Novel multi-view pooling layer
e (Clear accuracy gains, particularly in the high-recall regime
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