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Goal Contributions
• Detect prohibited objects in

X-ray recordings of luggage
• Utilize multi-view information
• Leverage features from pre-

trained deep CNN-backbones

• Multi-view pooling layer for 3D
aggregation of 2D features

• End-to-end trainable multi-
view detection pipeline

Example of multi-view X-ray images of hand luggage. Ground-truth (green) and
detected (red) bounding boxes (detection confidence of 99.2 %).

Multi-view X-ray Dataset
• Dual-energy X-ray recordings
• Converted to false-color RGB
• 4 different views per recording
• 2 object classes: weapon and

glassbottle
• Image resolution of [704, 832] ×

[101, 1400] px

Type Images

Glassbottle 2428
TIP Weapon 8640
Real Weapon 1856
Negative 3800

All 16724

3D bounding box annotations
• Generate axis-aligned 3D

bounding boxes from 2D bound-
ing box annotations

• Intersection of projection lines in
the xy-plane

• Choose minimal bounding box
enclosing the polygon

• Project 3D bounding boxes back
onto 2D views for propagation of
estimation error
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Bounding boxes show the original 2D annotations (black) and the reprojected 3D
annotations (red).

MX-RCNN Architecture
• Multi-view end-to-end trainable

object detection pipeline
• Hybrid 2D-3D architecture
• Based on Faster R-CNN [1]
• ResNet-50 backbone [2]

Multi-view
end-to-end trainable

• Feature extraction of each view independently in 2D
• Combine 2D features in multi-view pooling layer
• Propose and evaluate 3D bounding boxes
• Computationally faster and cheaper than separate processing

of views
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Multi-view Pooling Layer
• Maps 2D feature maps of views to common 3D feature volume
• Uses known geometry of recording setup
• Weighted average or weighted maximum across all X-ray beams
• Normalized volume of intersection as weights
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Multi-view pooling
converts features
from 2D to 3D

Results
Results (in %) of MX-RCNN networks compared to single-view baseline
(standard Faster R-CNN). Evaluation of proposed 3D bounding boxes
as well as projections onto 2D views.

Method Single-view MX-RCNNavg MX-RCNNmax

Evaluation 2D 3D 2D 3D 2D

Weapon AP 85.6 92.3 90.3 89.0 87.7
Glassbottle AP 96.9 98.8 95.4 98.7 95.6
Mean AP 91.2 95.6 92.8 93.9 91.7
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(a) Weapon class. (b) Glassbottle class.

Conclusion
• Multi-view end-to-end trainable MX-RCNN detector
• Novel multi-view pooling layer
• Clear accuracy gains, particularly in the high-recall regime
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